When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse problem - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem

    The inverse problem is the "inverse" of the forward problem: instead of determining the data produced by particular model parameters, we want to determine the model parameters that produce the data that is the observation we have recorded (the subscript obs stands for observed).

  3. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  5. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.

  6. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the formal residue, and a more direct formal proof is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting ...

  7. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    In the simple case of a function of one variable, say, h(x), we can solve an equation of the form h(x) = c for some constant c by considering what is known as the inverse function of h. Given a function h : A → B, the inverse function, denoted h −1 and defined as h −1 : B → A, is a function such that

  8. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  9. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The ginv function calculates a pseudoinverse using the singular value decomposition provided by the svd function in the base R package. An alternative is to employ the pinv function available in the pracma package. The Octave programming language provides a pseudoinverse through the standard package function pinv and the pseudo_inverse() method.