When.com Web Search

  1. Ad

    related to: right angled triangle angle calculator 3 sides

Search results

  1. Results From The WOW.Com Content Network
  2. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13). A primitive Pythagorean triple is one in which a, b and c are coprime (the greatest common divisor of a ...

  4. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    The name is derived from the Pythagorean theorem, stating that every right triangle has side lengths satisfying the formula + =; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the triangle with sides = = and ...

  5. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio.

  6. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Another approach is to split the triangle into two right-angled triangles. For example, take the Case 3 example where b, c, and B are given. Construct the great circle from A that is normal to the side BC at the point D. Use Napier's rules to solve the triangle ABD: use c and B to find the sides AD and BD and the angle ∠BAD.

  7. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Three sides (SSS) Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA) A side, the angle opposite to it and an angle adjacent to it (AAS).

  8. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  9. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    A right-angled triangle and its hypotenuse. In geometry, a hypotenuse is the side of a right triangle opposite the right angle. [1] It is the longest side of any such triangle; the two other shorter sides of such a triangle are called catheti or legs.