Ad
related to: examples of dividing exponents
Search results
Results From The WOW.Com Content Network
Rather than using the ambiguous division sign (÷), [a] division is usually represented with a vinculum, a horizontal line, as in 3 / x + 1 . In plain text and programming languages, a slash (also called a solidus) is used, e.g. 3 / (x + 1). Exponents are usually formatted using superscripts, as in x 2.
For example, on a simple calculator, typing 1 + 2 × 3 = yields 9, while a more sophisticated calculator will use a more standard priority, so typing 1 + 2 × 3 = yields 7. Calculators may associate exponents to the left or to the right.
When there are several operations that may be repeated, it is common to indicate the repeated operation by placing its symbol in the superscript, before the exponent. For example, if f is a real function whose valued can be multiplied, denotes the exponentiation with respect of multiplication, and may denote exponentiation with respect of ...
A quadratic equation is one which includes a term with an exponent of 2, for example, , [40] and no term with higher exponent. The name derives from the Latin quadrus , meaning square. [ 41 ] In general, a quadratic equation can be expressed in the form a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} , [ 42 ] where a is not zero (if it were ...
Similarly, division is accomplished by subtracting the divisor's exponent from the dividend's exponent, and dividing the dividend's significand by the divisor's significand. There are no cancellation or absorption problems with multiplication or division, though small errors may accumulate as operations are performed in succession. [ 43 ]
Over an algebraically closed field K (for example the complex numbers C), there are no finite-dimensional associative division algebras, except K itself. [2] Associative division algebras have no nonzero zero divisors. A finite-dimensional unital associative algebra (over any field) is a division algebra if and only if it has no nonzero zero ...
An example is 3 tetrated to 4 is 3^3^3^3. It is the next hyperoperation after exponentiation, ... Importantly, nested exponents are interpreted from the top down: ...
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.