Search results
Results From The WOW.Com Content Network
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
Near the time of the equinoxes, the Sun faces the equator of Uranus, giving a period of day–night cycles similar to those seen on most of the other planets. One result of this axis orientation is that, averaged over the Uranian year, the near-polar regions of Uranus receive a greater energy input from the Sun than its equatorial regions.
The timeline of discovery of Solar System planets and their natural satellites charts the progress of the discovery of new bodies over history. Each object is listed in chronological order of its discovery (multiple dates occur when the moments of imaging, observation, and publication differ), identified through its various designations (including temporary and permanent schemes), and the ...
“The spacecraft saw Uranus in conditions that only occur about 4% of the time.” An image of the planet Uranus taken by the NASA spacecraft Voyager 2 in 1986.
Uranus is the third-largest and fourth most massive planet in the Solar System. It orbits the Sun at a distance of about 2.8 billion kilometers (1.7 billion miles) and completes one orbit every 84 years. The length of a day on Uranus as measured by Voyager 2 is 17 hours and 14 minutes. Uranus is distinguished by the fact that it is tipped on ...
Scientists may have explained a mystery that has puzzled us about Uranus for decades. Researchers believe that data that appeared not to make sense was collected by a powerful solar storm. In 1986 ...
In 1781, German-born British astronomer William Herschel made Uranus the first planet discovered with the aid of a telescope. This frigid planet, our solar system's third largest, remains a bit of ...
The equation of time vanishes only for a planet with zero axial tilt and zero orbital eccentricity. [5] Two examples of planets with large equations of time are Mars and Uranus. On Mars the difference between sundial time and clock time can be as much as 50 minutes, due to the considerably greater eccentricity of its orbit.