When.com Web Search

  1. Ads

    related to: dcode big numbers calculator 2 variables 0 5 x 6 area rugs

Search results

  1. Results From The WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Variables of BigNumber type can be used, or regular numbers can be converted to big numbers using conversion operator # (e.g., #2.3^2000.1). SmartXML big numbers can have up to 100,000,000 decimal digits and up to 100,000,000 whole digits.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    If a instead is one, the variable base (containing the value b 2 i mod m of the original base) is simply multiplied in. In this example, the base b is raised to the exponent e = 13. The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1.

  4. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers.

  5. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. Values of 10 ↑ n b {\displaystyle 10\uparrow ^{n}b} = H n + 2 ( 10 , b ) {\displaystyle H_{n+2}(10,b)} = 10 [ n + 2 ] b {\displaystyle 10[n+2]b} = 10 → b → n

  6. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    For example, if the polynomial used to define the finite field GF(2 8) is p = x 8 + x 4 + x 3 + x + 1, and a = x 6 + x 4 + x + 1 is the element whose inverse is desired, then performing the algorithm results in the computation described in the following table.

  7. Inverse Symbolic Calculator - Wikipedia

    en.wikipedia.org/wiki/Inverse_Symbolic_Calculator

    A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.