Search results
Results From The WOW.Com Content Network
A dynamic array works much like an unpacked array, but offers the advantage of being dynamically allocated at runtime (as shown above.) Whereas a packed array's size must be known at compile time (from a constant or expression of constants), the dynamic array size can be initialized from another runtime variable, allowing the array to be sized ...
SystemVerilog DPI (Direct Programming Interface) is an interface which can be used to interface SystemVerilog with foreign languages. These foreign languages can be C, C++, SystemC as well as others. DPIs consist of two layers: a SystemVerilog layer and a foreign language layer. Both the layers are isolated from each other.
A bit array (also known as bitmask, [1] bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure . A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly.
The lazy initialization technique allows us to do this in just O(m) operations, rather than spending O(m+n) operations to first initialize all array cells. The technique is simply to allocate a table V storing the pairs ( k i , v i ) in some arbitrary order, and to write for each i in the cell T [ k i ] the position in V where key k i is stored ...
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
The Universal Verification Methodology (UVM) is a standardized methodology for verifying integrated circuit designs. UVM is derived mainly from OVM (Open Verification Methodology) which was, to a large part, based on the eRM (e Reuse Methodology) for the e verification language developed by Verisity Design in 2001.
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).