When.com Web Search

  1. Ad

    related to: upper bound calculator calculus problems with steps pdf free printable sashiko patterns

Search results

  1. Results From The WOW.Com Content Network
  2. Unit distance graph - Wikipedia

    en.wikipedia.org/wiki/Unit_distance_graph

    The best known lower bound is slightly above linear in —far from the upper bound, proportional to /. The number of colors required to color unit distance graphs is also unknown (the Hadwiger–Nelson problem ): some unit distance graphs require five colors, and every unit distance graph can be colored with seven colors.

  3. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers ... converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums ...

  4. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.

  5. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...

  6. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/.../Fundamental_theorem_of_calculus

    The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be ...

  7. Minkowski's bound - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_bound

    Minkowski's bound may be used to derive a lower bound for the discriminant of a field K given n, r 1 and r 2. Since an integral ideal has norm at least one, we have 1 ≤ M K , so that | D | ≥ ( π 4 ) r 2 n n n ! ≥ ( π 4 ) n / 2 n n n !

  8. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  9. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Because () is bounded, this sequence has a lower bound and an upper bound . We take I 1 = [ s , S ] {\displaystyle I_{1}=[s,S]} as the first interval for the sequence of nested intervals. Then we split I 1 {\displaystyle I_{1}} at the mid into two equally sized subintervals.