When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  4. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    As exchanging the indices of an array is the essence of array transposition, an array stored as row-major but read as column-major (or vice versa) will appear transposed. As actually performing this rearrangement in memory is typically an expensive operation, some systems provide options to specify individual matrices as being stored transposed.

  5. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]

  6. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The MATLAB language introduces the left-division operator \ to maintain the essential part of the analogy with the scalar case, therefore simplifying the mathematical reasoning and preserving the conciseness: A \ (A * x)==A \ b (A \ A)* x ==A \ b (associativity also holds for matrices, commutativity is no more required) x = A \ b

  7. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...

  8. Array (data structure) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_structure)

    Arrays are used to implement other data structures, such as lists, heaps, hash tables, deques, queues, stacks, strings, and VLists. Array-based implementations of other data structures are frequently simple and space-efficient (implicit data structures), requiring little space overhead, but may have poor space complexity, particularly when ...

  9. Array (data type) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_type)

    For one-dimensional arrays, this facility may be provided as an operation append(A,x) that increases the size of the array A by one and then sets the value of the last element to x. Other array types (such as Pascal strings) provide a concatenation operator, which can be used together with slicing to achieve that effect and more.