When.com Web Search

  1. Ad

    related to: how to calculate d velocity calculus with vector and x line in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    1-forms and 1-vector fields: the 1-form a x dx + a y dy + a z dz corresponds to the vector field (a x, a y, a z). 1-forms and 2-forms: one replaces dx by the dual quantity dy ∧ dz (i.e., omit dx), and likewise, taking care of orientation: dy corresponds to dz ∧ dx = −dx ∧ dz, and dz corresponds to dx ∧ dy.

  3. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  4. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  5. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.

  6. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus. Vector fields can usefully be thought of as representing the velocity of a moving flow in ...

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    If there exists an m × n matrix A such that = + ‖ ‖ in which the vector ε → 0 as Δx → 0, then f is by definition differentiable at the point x. The matrix A is sometimes known as the Jacobian matrix , and the linear transformation that associates to the increment Δ x ∈ R n the vector A Δ x ∈ R m is, in this general setting ...

  8. Helmholtz decomposition - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_decomposition

    The Helmholtz decomposition in three dimensions was first described in 1849 [9] by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, [10] [11] which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. [11]

  9. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...