Search results
Results From The WOW.Com Content Network
Original file (SVG file, nominally 744 × 744 pixels, file size: 302 KB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters −λ/(2μ 2) and −λ/2, and natural statistics X and 1/X.. For > fixed, it is also a single-parameter natural exponential family distribution [4] where the base distribution has density
The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively. [7] Specifically, an inverse Gaussian distribution of the form
Original file (SVG file, nominally 744 × 744 pixels, file size: 304 KB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The quantile function, Q, of a probability distribution is the inverse of its cumulative distribution function F. The derivative of the quantile function, namely the quantile density function, is yet another way of prescribing a probability distribution. It is the reciprocal of the pdf composed with the quantile function.
Original file (SVG file, nominally 720 × 460 pixels, file size: 76 KB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
The cumulative distribution function of the reciprocal, within the same range, is G ( y ) = b − y − 1 b − a . {\displaystyle G(y)={\frac {b-y^{-1}}{b-a}}.} For example, if X is uniformly distributed on the interval (0,1), then Y = 1 / X has density g ( y ) = y − 2 {\displaystyle g(y)=y^{-2}} and cumulative distribution function G ( y ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .