When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Tetrahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_symmetry

    The three elements of the latter are the identity, "clockwise rotation", and "anti-clockwise rotation", corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two equal rectangles, such that the line segments of adjacent ...

  4. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    corresponds to a 90° planar rotation clockwise about the origin. The transpose of the 2 × 2 matrix = [] is its inverse, but since its determinant is −1, this is not a proper rotation matrix; it is a reflection across the line 11y = 2x.

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...

  7. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    Letting τ ∈ G be the reflection of the arrowed edge, the composite figure X + = X # ∪ τX # has a bidirectional arrow on that edge, and its symmetry group is H = {1, τ}. This subgroup is not normal, since gX + may have the bi-arrow on a different edge, giving a different reflection symmetry group.

  8. Orientability - Wikipedia

    en.wikipedia.org/wiki/Orientability

    A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]

  9. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The product of two rotations or two reflections is a rotation; the product of a rotation and a reflection is a reflection. So far, we have considered D n to be a subgroup of O(2) , i.e. the group of rotations (about the origin) and reflections (across axes through the origin) of the plane.