Search results
Results From The WOW.Com Content Network
hydrogen sulfide chemosynthesis: [1] 18H 2 S + 6CO 2 + 3 O 2 → C 6 H 12 O 6 (carbohydrate) + 12H 2 O + 18 S. In the above process, hydrogen sulfide serves as a source of electrons for the reaction. [6] Instead of releasing oxygen gas while fixing carbon dioxide as in photosynthesis, hydrogen sulfide chemosynthesis produces solid globules of ...
Hydrogen sulfide reacts with metal ions to form metal sulfides, which are insoluble, often dark colored solids. This behavior is the basis of the use of hydrogen sulfide as a reagent in the qualitative inorganic analysis of metal ions.
The energy of the photon is used to excite an electron of a pigment. The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H 2 O or hydrogen sulfide towards carbon dioxide, eventually producing glucose.
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen).
Photosynthesis is the only process that allows the conversion of atmospheric carbon (CO2) to organic (solid) carbon, and this process plays an essential role in climate models. This lead researchers to study the sun-induced chlorophyll fluorescence (i.e., chlorophyll fluorescence that uses the Sun as illumination source; the glow of a plant) as ...
Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant. Composite image showing the global distribution of photosynthesis, including both oceanic phytoplankton and terrestrial vegetation. Dark red and blue-green indicate regions of high photosynthetic activity in the ocean and on land, respectively.
Type I photosystems use ferredoxin-like iron-sulfur cluster proteins as terminal electron acceptors, while type II photosystems ultimately shuttle electrons to a quinone terminal electron acceptor. Both reaction center types are present in chloroplasts and cyanobacteria, and work together to form a unique photosynthetic chain able to extract ...