Search results
Results From The WOW.Com Content Network
Endospore staining is a technique used in bacteriology to identify the presence of endospores in a bacterial sample. [1] Within bacteria, endospores are protective structures used to survive extreme conditions, including high temperatures making them highly resistant to chemicals. [ 2 ]
To combat this, a special stain technique called a Moeller stain is used. That allows the endospore to show up as red, while the rest of the cell stains blue. Another staining technique for endospores is the Schaeffer-Fulton stain, which stains endospores green and bacterial bodies red. The arrangement of spore layers is as follows:
The Schaeffer–Fulton stain is a technique designed to isolate endospores by staining any present endospores green, and any other bacterial bodies red. [1] The primary stain is malachite green , and the counterstain is safranin , which dyes any other bacterial bodies red.
Bacillus cereus endospore stain. ... Below is a list of differential techniques and results that can help to ... The blood samples were positive for B. cereus and the ...
Moeller staining involves the use of a steamed dye reagent in order to increase the stainability of endospores. Carbol fuchsin is the primary stain used in this method. Endospores are stained red, while the counterstain methylene blue stains the vegetative bacteria blue.
Clostridium sporogenes is a species of Gram-positive bacteria that belongs to the genus Clostridium. Like other strains of Clostridium, it is an anaerobic, rod-shaped bacterium that produces oval, subterminal endospores [2] and is commonly found in soil. Unlike Clostridium botulinum, it does not produce the botulinum neurotoxins.
Fig1. The sporulation process of Bacillus subtilis. Bacillus subtilis is a rod-shaped, Gram-positive bacteria that is naturally found in soil and vegetation, and is known for its ability to form a small, tough, protective and metabolically dormant endospore.
Positive for the phenylalanine test and the Harnstoff urea test P. vulgaris can test positive or negative for citrate. All combine for a Biocode ID of 31406, (Biocode ID 31402, 31404, 31407 all resulting in P. vulgaris with asymptomatic results) for use in the Interpretation Guide/Computer Coding and Identification System.