Search results
Results From The WOW.Com Content Network
The x and y coordinates of the point of intersection of two non-vertical lines can easily be found using the following substitutions and rearrangements. Suppose that two lines have the equations y = ax + c and y = bx + d where a and b are the slopes (gradients) of the lines and where c and d are the y-intercepts of the lines.
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
For two non-parallel line segments (,), (,) and (,), (,) there is not necessarily an intersection point (see diagram), because the intersection point (,) of the corresponding lines need not to be contained in the line segments. In order to check the situation one uses parametric representations of the lines:
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.
Let A 1, A 2, B 1, B 2, C 1, C 2 be the six intersection points, with the same letter corresponding to the same line and the index 1 corresponding to the point closer to P. Let D be the point where the lines A 1 B 2 and A 2 B 1 intersect, Similarly E for the lines B 1 C 2 and B 2 C 1. Draw a line through D and E. This line meets the circle at ...
The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...
The book is organized into three sections. [2] [3] The first section provides introductory material, describing different mathematical situations in which multiple curves might meet, and providing different possible explanations for this phenomenon, including symmetry, geometric transformations, and membership of the curves in a pencil of curves. [4]
For stating the general result, one has to recall that the intersection points form an algebraic set, and that there is a finite number of intersection points if and only if all component of the intersection have a zero dimension (an algebraic set of positive dimension has an infinity of points over an algebraically closed field).