Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
The beta-binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with heterogeneity in the success probability. The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because ...
Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences; Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
The word binomial is composed of two elements: bi-(Latin prefix meaning 'two') and nomial (the adjective form of nomen, Latin for 'name').In Medieval Latin, the related word binomium was used to signify one term in a binomial expression in mathematics. [7]
If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT: If X is a Poisson random variable with large mean, then for integers j and k , P( j ≤ X ≤ k ) approximately equals to P ( j − 1/2 ≤ Y ≤ k + 1/2) where Y is a ...
A binomial test is a statistical hypothesis test used to determine whether the proportion of successes in a sample differs from an expected proportion in a binomial distribution. It is useful for situations when there are two possible outcomes (e.g., success/failure, yes/no, heads/tails), i.e., where repeated experiments produce binary data .
Binomial (polynomial), a polynomial with two terms; Binomial coefficient, numbers appearing in the expansions of powers of binomials; Binomial QMF, a perfect-reconstruction orthogonal wavelet decomposition; Binomial theorem, a theorem about powers of binomials; Binomial type, a property of sequences of polynomials; Binomial series, a ...
Consider a sequence of negative binomial random variables where the stopping parameter r goes to infinity, while the probability p of success in each trial goes to one, in such a way as to keep the mean of the distribution (i.e. the expected number of failures) constant. Denoting this mean as λ, the parameter p will be p = r/(r + λ)