When.com Web Search

  1. Ads

    related to: material derivative formula examples with solutions math free

Search results

  1. Results From The WOW.Com Content Network
  2. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...

  3. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...

  4. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    where ⁠ D / Dt ⁠ is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

  5. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    The calculus of variations deals with functionals : ¯, where is some function space and ¯ = {}. The main interest of the subject is to find minimizers for such functionals, that is, functions v ∈ V {\displaystyle v\in V} such that J ( v ) ≤ J ( u ) {\displaystyle J(v)\leq J(u)} for all u ∈ V {\displaystyle u\in V} .

  6. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This "special" derivative is in fact the ordinary derivative of a function of many variables along a path following the fluid motion; it may be derived through application of the chain rule in which all independent variables are checked for change along the path (which is to say, the total derivative). For example, the measurement of changes in ...

  7. Primitive equations - Wikipedia

    en.wikipedia.org/wiki/Primitive_equations

    The primitive equations may be linearized to yield Laplace's tidal equations, an eigenvalue problem from which the analytical solution to the latitudinal structure of the flow may be determined. In general, nearly all forms of the primitive equations relate the five variables u, v, ω, T, W, and their evolution over space and time.