Ad
related to: photosynthesis diagram black and white no labels found 1 2 6 7
Search results
Results From The WOW.Com Content Network
Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]
NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2. where the mobile electron carriers are plastoquinol and cytochrome c 6, while the proton pumps are NADH dehydrogenase, cyt b 6 f and cytochrome aa 3 (member of the COX3 family). Cyanobacteria are the only bacteria that produce oxygen during photosynthesis.
They are composed of lipids and proteins that include various photosynthetic pigments and redox carriers. For this reason they are considered to be photosynthetic units. They occur in 2 sizes: the smaller quantasome is thought to represent the site of photosystem I, the larger to represent the site of photosystem II. [clarification needed]
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
A reaction center comprises several (about 25-30) [6] protein subunits, which provide a scaffold for a series of cofactors. The cofactors can be pigments (like chlorophyll, pheophytin, carotenoids), quinones, or iron-sulfur clusters. [7] Each photosystem has two main subunits: an antenna complex (a light harvesting complex or LHC) and a ...
A simplified diagram of photosynthesis. Redrawn in vector format from Image:Simple_photosynthesis_overview.PNG: Date: 18 April 2008: Source: Own work: Author: Daniel Mayer (mav) - original image Vector version by Yerpo: Other versions
The photosynthetic rate (Rate of CO 2 exchange in the leaf chamber) is the difference in CO 2 concentration through chamber, adjusted for the molar flow of air per m 2 of leaf area, mol m −2 s −1. The change in H 2 O vapour pressure is water vapour pressure out of leaf chamber, in mbar, minus the water vapour pressure into leaf chamber, in ...
6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2 where C 6 H 12 O 6 is glucose (which is subsequently transformed into other sugars , starches , cellulose , lignin , and so forth). The value of the photosynthetic efficiency is dependent on how light energy is defined – it depends on whether we count only the light that is absorbed, and on ...