Search results
Results From The WOW.Com Content Network
In mathematics, a corollary is a theorem connected by a short proof to an existing theorem. The use of the term corollary, rather than proposition or theorem, is intrinsically subjective. More formally, proposition B is a corollary of proposition A, if B can be readily deduced from A or is self-evident from its proof.
With the advent of algebraic logic, it became apparent that classical propositional calculus admits other semantics.In Boolean-valued semantics (for classical propositional logic), the truth values are the elements of an arbitrary Boolean algebra; "true" corresponds to the maximal element of the algebra, and "false" corresponds to the minimal element.
A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
Subsequent work to resolve these problems shaped the direction of mathematical logic, as did the effort to resolve Hilbert's Entscheidungsproblem, posed in 1928. This problem asked for a procedure that would decide, given a formalized mathematical statement, whether the statement is true or false.
Pre-algebra is a common name for a course taught in middle school mathematics in the United States, usually taught in the 6th, 7th, 8th, or 9th grade. [1] The main objective of it is to prepare students for the study of algebra. Usually, Algebra I is taught in the 8th or 9th grade. [2]
A quality of propositions that expresses mode or manner, particularly in terms of necessity, possibility, and other related concepts. model In logic and mathematics, a structure that interprets the symbols of a language and satisfies the statements of a theory or system. model-theoretic consequence See semantic consequence. [191] [192] [193]
A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1]
In mathematics, theorems are often stated in the form "P is true if and only if Q is true". Because, as explained in previous section, necessity of one for the other is equivalent to sufficiency of the other for the first one, e.g. P ⇐ Q {\displaystyle P\Leftarrow Q} is equivalent to Q ⇒ P {\displaystyle Q\Rightarrow P} , if P is necessary ...