When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    The events in the second space are both pairwise independent and mutually independent. To illustrate the difference, consider conditioning on two events. In the pairwise independent case, although any one event is independent of each of the other two individually, it is not independent of the intersection of the other two:

  3. Information content - Wikipedia

    en.wikipedia.org/wiki/Information_content

    If two independent events are measured separately, the total amount of information is the sum of the self-informations of the individual events. The detailed derivation is below, but it can be shown that there is a unique function of probability that meets these three axioms, up to a multiplicative scaling factor.

  4. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  5. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    (That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent. [2]

  6. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    If two events A and B occur on a single performance of an experiment, this is called the intersection or joint probability of A and B, denoted as (). Independent events [ edit ]

  7. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  8. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    This theorem could be useful in applications where multiple independent events are being observed. Independent events vs. mutually exclusive events. The concepts of mutually independent events and mutually exclusive events are separate and distinct. The following table contrasts results for the two cases (provided that the probability of the ...

  9. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...