Search results
Results From The WOW.Com Content Network
This "multi-layer ceramic capacitor" (MLCC) was compact and offered high-capacitance capacitors. [3] The production of these capacitors using the tape casting and ceramic-electrode cofiring processes was a great manufacturing challenge. MLCCs expanded the range of applications to those requiring larger capacitance values in smaller cases.
The capacitance increases with the area A of the plates and with the permittivity ε of the dielectric material, and decreases with the plate separation distance d. The capacitance is therefore greatest in devices made from materials with a high permittivity, large plate area, and small distance between plates.
Originally meant also as part marking code, this shorthand notation is widely used in electrical engineering to denote the values of resistors and capacitors in circuit diagrams and in the production of electronic circuits (for example in bills of material and in silk screens).
Electrolytic capacitors offer very high capacitance but suffer from poor tolerances, high instability, gradual loss of capacitance especially when subjected to heat, and high leakage current. Poor quality capacitors may leak electrolyte, which is harmful to printed circuit boards. The conductivity of the electrolyte drops at low temperatures ...
The capacitance value measured at the frequency of 1 kHz is about 10% less than the 100/120 Hz value. Therefore, the capacitance values of polymer e-caps are not directly comparable and differ from those of film capacitors or ceramic capacitors, whose capacitance is measured at 1 kHz or higher.
The capacitance value specified in the data sheets of the manufacturers is called the rated capacitance C R or nominal capacitance C N and is the value for which the capacitor has been designed. The standardized measuring condition for electrolytic capacitors is an AC measuring method with 0.5 V at a frequency of 100/120 Hz at a temperature of ...
The capacitance temperature dependence of polyester film capacitors is relatively high compared to other film capacitors, ±5% over the entire temperature range. The capacitance frequency dependence of polyester film capacitors compared with the other film capacitors is -3% in the range from 100 Hz to 100 kHz at the upper limit.
Greater capacitance per volume, since there are no airgaps between plates and mica, the conducting surfaces can be thinner. No clamping mechanism is needed. They are sometimes informally referred to as mica capacitors. Any modern reference to mica capacitors can be assumed to mean these, unless pre-World War II equipment is being discussed.