Search results
Results From The WOW.Com Content Network
The work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the product = For example, if a force of 10 newtons ( F = 10 N ) acts along a point that travels 2 metres ( s = 2 m ), then W = Fs = (10 N) (2 m) = 20 J .
The component of weight force is responsible for the tangential force (when we neglect friction). The centripetal force is due to the change in the direction of velocity. The normal force and weight may also point in the same direction. Both forces can point downwards, yet the object will remain in a circular path without falling down.
Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of d𝜃 at the centre of the circle), each with an area of 1 / 2 · r 2 · d𝜃 (derived from the expression for the area of a triangle: 1 / 2 · a · b · sin𝜃 ...
A tautochrone curve or isochrone curve (from Ancient Greek ταὐτό 'same' ἴσος 'equal' and χρόνος 'time') is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve.
The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1. The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is (/) /.
For an attractive force (α < 0), the orbit is an ellipse, a hyperbola or parabola, depending on whether u 1 is positive, negative, or zero, respectively; this corresponds to an eccentricity e less than one, greater than one, or equal to one. For a repulsive force (α > 0), u 1 must be negative, since u 2 is positive by definition and their sum ...
In the case of triangle SBC, area is equal to 1 / 2 (SB)(VC). Wherever C is eventually located due to the impulse applied at B, the product (SB)(VC), and therefore rmv ⊥ remain constant. Similarly so for each of the triangles. Another areal proof of conservation of angular momentum for any central force uses Mamikon's sweeping ...
Points with equal power, isolines of (), are circles concentric to circle . Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius