Search results
Results From The WOW.Com Content Network
PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms. Provides classification and regression datasets in a standardized format that are accessible through a Python API.
Images and (.mat, .txt, and .csv) label files Gender recognition and biometric identification 2017 [41] M Afifi CORe50 Specifically designed for Continuous/Lifelong Learning and Object Recognition, is a collection of more than 500 videos (30fps) of 50 domestic objects belonging to 10 different categories.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
The special case of linear support vector machines can be solved more efficiently by the same kind of algorithms used to optimize its close cousin, logistic regression; this class of algorithms includes sub-gradient descent (e.g., PEGASOS [48]) and coordinate descent (e.g., LIBLINEAR [49]). LIBLINEAR has some attractive training-time properties.
The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.
In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...
It was found that machine learning systems trained and validated on SD-3 suffered significant drops in performance on the test set. [12] The original dataset from MNIST contained 128x128 binary images. Each was size-normalized to fit in a 20x20 pixel box while preserving their aspect ratio, and anti-aliased to grayscale.