Search results
Results From The WOW.Com Content Network
The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as 3 {\textstyle {\sqrt {3}}} or 3 1 / 2 {\displaystyle 3^{1/2}} . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property.
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [8] or as a special case of De Gua's theorem (for the particular case of acute triangles), [9] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
If we draw both circles, two new points are created at their intersections. Drawing lines between the two original points and one of these new points completes the construction of an equilateral triangle. Therefore, in any geometric problem we have an initial set of symbols (points and lines), an algorithm, and some results.
The construction for an equilateral triangle is simple and has been known since antiquity; see Equilateral triangle. Constructions for the regular pentagon were described both by Euclid (Elements, ca. 300 BC), and by Ptolemy (Almagest, ca. 150 AD). Although Gauss proved that the regular 17-gon is constructible, he did not actually show how to ...
The following other wikis use this file: Usage on as.wikipedia.org সমবাহু ত্ৰিভুজ; Usage on bn.wikipedia.org সমবাহু ত্রিভুজ