When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    Operator norm. In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm of a linear map is the maximum factor by which it ...

  3. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:}. where denotes the supremum.

  4. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    The concept of normal matrices can be extended to normal operators on infinite-dimensional normed spaces and to normal elements in C*-algebras. As in the matrix case, normality means commutativity is preserved, to the extent possible, in the noncommutative setting. This makes normal operators, and normal elements of C*-algebras, more amenable ...

  5. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Orthogonal matrix. In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is where QT is the transpose of Q and I is the identity matrix. This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to ...

  6. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operator. In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  8. Schatten norm - Wikipedia

    en.wikipedia.org/wiki/Schatten_norm

    An operator which has a finite Schatten norm is called a Schatten class operator and the space of such operators is denoted by . With this norm, is a Banach space, and a Hilbert space for p = 2. Observe that , the algebra of compact operators. This follows from the fact that if the sum is finite the spectrum will be finite or countable with the ...

  9. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    Trace (linear algebra) In linear algebra, the trace of a square matrix A, denoted tr (A), [1] is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of A. The trace is only defined for a square matrix (n × n). In mathematical physics texts, if tr (A) = 0 then the matrix is said to be traceless.