When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    nilpotent matrix is always less than or equal to. n {\displaystyle n} For example, every. 2 × 2 {\displaystyle 2\times 2} nilpotent matrix squares to zero. The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible. The only nilpotent diagonalizable matrix is the zero matrix.

  3. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    Nilpotent. In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that . The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. [1]

  4. Nilpotent operator - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_operator

    The Volterra operator is the corresponding integral operator T on the Hilbert space L2 (0,1) given by. The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that Tn f ≠ 0 (in the sense of L2) for all n. However, T is quasinilpotent. First notice that K is in L2 (X, m), therefore T is compact.

  5. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.

  6. Nilpotent Lie algebra - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_Lie_algebra

    In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras. We write , and for all . If the lower central series eventually arrives at the zero subalgebra, then the Lie algebra is called nilpotent. The lower central series for Lie algebras is ...

  7. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    Invariants of tensors. In mathematics, in the fields of multilinear algebra and representation theory, the principal invariants of the second rank tensor are the coefficients of the characteristic polynomial [1] , where is the identity operator and are the roots of the polynomial and the eigenvalues of . More broadly,any scalar-valued function ...

  8. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒəˈkoʊbiən /, [1][2][3] / dʒɪ -, jɪ -/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output ...