When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lenstra–Lenstra–Lovász lattice basis reduction algorithm

    en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász...

    An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.

  3. Lattice reduction - Wikipedia

    en.wikipedia.org/wiki/Lattice_reduction

    Lattice reduction in two dimensions: the black vectors are the given basis for the lattice (represented by blue dots), the red vectors are the reduced basis. In mathematics, the goal of lattice basis reduction is to find a basis with short, nearly orthogonal vectors when given an integer lattice basis as input. This is realized using different ...

  4. Lattice problem - Wikipedia

    en.wikipedia.org/wiki/Lattice_problem

    Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time. [33]

  5. Coppersmith method - Wikipedia

    en.wikipedia.org/wiki/Coppersmith_method

    The Coppersmith method, proposed by Don Coppersmith, is a method to find small integer zeroes of univariate or bivariate polynomials, or small zeros modulo a given integer. The method uses the Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) to find a polynomial that has the same zeroes as the target polynomial but smaller ...

  6. QLattice - Wikipedia

    en.wikipedia.org/wiki/QLattice

    The QLattice is a software library which provides a framework for symbolic regression in Python.It works on Linux, Windows, and macOS.The QLattice algorithm is developed by the Danish/Spanish AI research company Abzu. [1]

  7. Cyclic reduction - Wikipedia

    en.wikipedia.org/wiki/Cyclic_reduction

    The method only applies to matrices that can be represented as a (block) Toeplitz matrix. Such problems often arise in implicit solutions for partial differential equations on a lattice. For example fast solvers for Poisson's equation express the problem as solving a tridiagonal matrix, discretising the solution on a regular grid.

  8. Korkine–Zolotarev lattice basis reduction algorithm - Wikipedia

    en.wikipedia.org/wiki/Korkine–Zolotarev_lattice...

    The Korkine–Zolotarev (KZ) lattice basis reduction algorithm or Hermite–Korkine–Zolotarev (HKZ) algorithm is a lattice reduction algorithm. For lattices in R n {\displaystyle \mathbb {R} ^{n}} it yields a lattice basis with orthogonality defect at most n n {\displaystyle n^{n}} , unlike the 2 n 2 / 2 {\displaystyle 2^{n^{2}/2}} bound of ...

  9. Ring learning with errors - Wikipedia

    en.wikipedia.org/wiki/Ring_learning_with_errors

    An important feature of basing cryptography on the ring learning with errors problem is the fact that the solution to the RLWE problem can be used to solve a version of the shortest vector problem (SVP) in a lattice (a polynomial-time reduction from this SVP problem to the RLWE problem has been presented [1]).