Search results
Results From The WOW.Com Content Network
In logical argument and mathematical proof, the therefore sign, ∴, is generally used before a logical consequence, such as the conclusion of a syllogism. The symbol consists of three dots placed in an upright triangle and is read therefore. While it is not generally used in formal writing, it is used in mathematics and shorthand.
Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. [1] A sentence is said to be a logical consequence of a set of sentences, for a given language , if and only if , using only logic (i.e., without regard to any personal interpretations of the sentences) the sentence must ...
Therefore (Mathematical symbol for "therefore" is ), if it rains today, we will go on a canoe trip tomorrow". To make use of the rules of inference in the above table we let p {\displaystyle p} be the proposition "If it rains today", q {\displaystyle q} be "We will not go on a canoe today" and let r {\displaystyle r} be "We will go on a canoe ...
Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case. For example:
Therefore, that creature is a bird. "That creature" may well be a bird, but the conclusion does not follow from the premises. Certain other animals also have beaks, for example: an octopus and a squid both have beaks, some turtles and cetaceans have beaks. Errors of this type occur because people reverse a premise. [6]
It used to be standard practice to use a fixed, infinite set of non-logical symbols for all purposes: For every integer n ≥ 0, there is a collection of n-ary, or n-place, predicate symbols. Because they represent relations between n elements, they are also called relation symbols. For each arity n, there is an infinite supply of them:
[18] [19] For example, in the argument "all puppies are dogs; all dogs are animals; therefore all puppies are animals", the propositions "all puppies are dogs" and "all dogs are animals" act as premises while the proposition "all puppies are animals" is the conclusion. [21] [22] A set of premises together with a conclusion is called an argument.
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...