When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Scalar multiplication - Wikipedia

    en.wikipedia.org/wiki/Scalar_multiplication

    Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).

  5. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds: The following relationship holds: a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \cdot \mathbf {c} )\mathbf {b ...

  6. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  7. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    More abstractly, the outer product is the bilinear map ⁡ (,) sending a vector and a covector to a rank 1 linear transformation (simple tensor of type (1, 1)), while the inner product is the bilinear evaluation map given by evaluating a covector on a vector; the order of the domain vector spaces here reflects the covector/vector distinction.

  8. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The most noteworthy property of cosine similarity is that it reflects a relative, rather than absolute, comparison of the individual vector dimensions. For any positive constant and vector , the vectors and are maximally similar. The measure is thus most appropriate for data where frequency is more important than absolute values; notably, term ...

  9. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector may also result from the evaluation, at a particular instant, of a continuous vector-valued function (e.g., the pendulum equation). In the natural sciences, the term "vector quantity" also encompasses vector fields defined over a two-or three-dimensional region of space, such as wind velocity over Earth's surface.