When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lattice reduction - Wikipedia

    en.wikipedia.org/wiki/Lattice_reduction

    Lattice reduction in two dimensions: the black vectors are the given basis for the lattice (represented by blue dots), the red vectors are the reduced basis. In mathematics, the goal of lattice basis reduction is to find a basis with short, nearly orthogonal vectors when given an integer lattice basis as input. This is realized using different ...

  3. Fractional coordinates - Wikipedia

    en.wikipedia.org/wiki/Fractional_coordinates

    In a fractional coordinate system the basis vectors of the coordinate system are chosen to be lattice vectors and the basis is then termed a crystallographic basis (or lattice basis). In a lattice basis, any lattice vector t {\displaystyle \mathbf {t} } can be represented as,

  4. Lenstra–Lenstra–Lovász lattice basis reduction algorithm

    en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász...

    Given a basis = {,, …,} with n-dimensional integer coordinates, for a lattice L (a discrete subgroup of R n) with , the LLL algorithm calculates an LLL-reduced (short, nearly orthogonal) lattice basis in time (⁡) where is the largest length of under the Euclidean norm, that is, = (‖ ‖, ‖ ‖, …, ‖ ‖).

  5. Lattice problem - Wikipedia

    en.wikipedia.org/wiki/Lattice_problem

    Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time. [33]

  6. File:Honeycomb lattice - hexagonal lattice with a two-atom ...

    en.wikipedia.org/wiki/File:Honeycomb_lattice...

    English: Honeycomb lattice is not a Bravais lattice, but can be considered a hexagonal Bravais lattice with a two-atom basis (atoms A and B). Vectors a₁ and a₂ are primitive translation vectors. The gray rhombus is a primitive cell.

  7. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).

  8. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    A crystal is made up of one or more atoms, called the basis or motif, at each lattice point. The basis may consist of atoms, molecules, or polymer strings of solid matter, and the lattice provides the locations of the basis. Two Bravais lattices are often considered equivalent if they have isomorphic symmetry groups. In this sense, there are 5 ...

  9. Fundamental pair of periods - Wikipedia

    en.wikipedia.org/wiki/Fundamental_pair_of_periods

    In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. Fundamental parallelogram defined by a pair of vectors in the complex plane.

  1. Related searches define lattice and basis point of two vectors in python practice worksheet

    lattice basis formulalattice base reduction
    lattice basis calculatorlattice problems examples
    lattice based algorithm