When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...

  3. Oxygen reduction reaction - Wikipedia

    en.wikipedia.org/wiki/Oxygen_reduction_reaction

    In chemistry, the oxygen reduction reaction refers to the reduction half reaction whereby O 2 is reduced to water or hydrogen peroxide. In fuel cells, the reduction to water is preferred because the current is higher. The oxygen reduction reaction is well demonstrated and highly efficient in nature. [1] [2]

  4. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    Each half-reaction has a standard electrode potential (E o cell), which is equal to the potential difference or voltage at equilibrium under standard conditions of an electrochemical cell in which the cathode reaction is the half-reaction considered, and the anode is a standard hydrogen electrode where hydrogen is oxidized: [24] 1 ⁄ 2 H 2 → ...

  5. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    In the above equation, the Iron (Fe) has an oxidation number of 0 before and 3+ after the reaction. For oxygen (O) the oxidation number began as 0 and decreased to 2−. These changes can be viewed as two "half-reactions" that occur concurrently: Oxidation half reaction: Fe 0 → Fe 3+ + 3e −; Reduction half reaction: O 2 + 4e − → 2 O 2−

  6. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [ 1 ] [ 2 ] The actual physiological potential depends on the ratio of the reduced ( Red ) and oxidized ( Ox ) forms according to the Nernst equation and the thermal voltage .

  7. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  8. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    4H + + 4e − → 2H 2 Reduction (generation of dihydrogen) 2H 2 O → 2H 2 + O 2 Total Reaction Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond.

  9. Electrochemical cell - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_cell

    Each half-cell has a characteristic voltage (depending on the metal and its characteristic reduction potential). Each reaction is undergoing an equilibrium reaction between different oxidation states of the ions: when equilibrium is reached, the cell cannot provide further voltage.