Ad
related to: gyroscope physics explained
Search results
Results From The WOW.Com Content Network
The hemispherical resonator gyroscope (HRG), also called a wine-glass gyroscope [52] or mushroom gyro, makes use of a thin solid-state hemispherical shell, anchored by a thick stem. This shell is driven to a flexural resonance by electrostatic forces generated by electrodes which are deposited directly onto separate fused-quartz structures that ...
Foucault published two papers in 1852, one focused on astronomy with the weight free to move on all three axes (On a new experimental demonstration of the motion of the Earth, based on the fixity of the plane of rotation) [8] and the other on mechanics with the weight free to move on only two axes (On the orientation phenomena of rotating bodies driven by a fixed axis on the Earth's surface.
A fibre-optic gyroscope (FOG) senses changes in orientation using the Sagnac effect, thus performing the function of a mechanical gyroscope. However its principle of operation is instead based on the interference of light which has passed through a coil of optical fibre , which can be as long as 5 kilometres (3 mi).
This is called a ring laser or ring laser gyroscope. The light is generated and sustained by incorporating laser excitation in the path of the light. To understand what happens in a ring laser cavity, it is helpful to discuss the physics of the laser process in a laser setup with continuous generation of light.
A ring laser gyroscope (RLG) consists of a ring laser having two independent counter-propagating resonant modes over the same path; the difference in phase is used to detect rotation. It operates on the principle of the Sagnac effect which shifts the nulls of the internal standing wave pattern in response to angular rotation.
A vibrating structure gyroscope (VSG), defined by the IEEE as a Coriolis vibratory gyroscope (CVG), [1] is a gyroscope that uses a vibrating (as opposed to rotating) structure as its orientation reference. A vibrating structure gyroscope functions much like the halteres of flies (insects in the order Diptera).
A gyroscope is an essential component of a gyrocompass, but they are different devices; a gyrocompass is built to use the effect of gyroscopic precession, which is a distinctive aspect of the general gyroscopic effect.
In physics, there are two types of precession: torque-free and torque-induced. In astronomy, precession refers to any of several slow changes in an astronomical body's rotational or orbital parameters. An important example is the steady change in the orientation of the axis of rotation of the Earth, known as the precession of the equinoxes.