Search results
Results From The WOW.Com Content Network
This example could be implemented with the Java 8 merge() but it shows the overall lock-free pattern, which is more general. This example is not related to the internals of the ConcurrentMap but to the client code's use of the ConcurrentMap. For example, if we want to multiply a value in the Map by a constant C atomically:
In Haskell, the polymorphic function map :: (a -> b) -> [a] -> [b] is generalized to a polytypic function fmap :: Functor f => (a -> b) -> f a -> f b, which applies to any type belonging the Functor type class. The type constructor of lists [] can be defined as an instance of the Functor type class using the map function from the previous example:
Apache Cayenne, open-source for Java; Apache OpenJPA, open-source for Java; DataNucleus, open-source JDO and JPA implementation (formerly known as JPOX) Ebean, open-source ORM framework; EclipseLink, Eclipse persistence platform; Enterprise JavaBeans (EJB) Enterprise Objects Framework, Mac OS X/Java, part of Apple WebObjects
The object pool design pattern is used in several places in the standard classes of the .NET Framework. One example is the .NET Framework Data Provider for SQL Server. As SQL Server database connections can be slow to create, a pool of connections is maintained. Closing a connection does not actually relinquish the link to SQL Server.
Maps are data structures that associate a key with an element. This lets the map be very flexible. If the key is the hash code of the element, the Map is essentially a Set. If it's just an increasing number, it becomes a list. Examples of Map implementations include java.util.HashMap, java.util.LinkedHashMap, and java.util.TreeMap.
Complete article "Java Singleton Pattern Explained" Four different ways to implement singleton in Java "Ways to implement singleton in Java" Book extract: Implementing the Singleton Pattern in C# by Jon Skeet; Singleton at Microsoft patterns & practices Developer Center; IBM article "Double-checked locking and the Singleton pattern" by Peter Haggar
In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions. Chaotic maps often occur in the study of dynamical systems.
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.