Search results
Results From The WOW.Com Content Network
In fluid mechanics, pipe flow is a type of fluid flow within a closed conduit, such as a pipe, duct or tube. It is also called as Internal flow. [1] The other type of flow within a conduit is open channel flow. These two types of flow are similar in many ways, but differ in one important aspect.
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
In fluid dynamics, the no-slip condition is a boundary condition which enforces that at a solid boundary, a viscous fluid attains zero bulk velocity.This boundary condition was first proposed by Osborne Reynolds, who observed this behaviour while performing his influential pipe flow experiments. [1]
[7] [8] [9] Because of inertial effects, the fluid will prefer to the straight direction. Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4.
In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid.
The parameter that becomes "choked" or "limited" is the fluid velocity. Choked flow is a fluid dynamic condition associated with the Venturi effect . When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe ) into a lower pressure environment ...