Ads
related to: the math antics formulas
Search results
Results From The WOW.Com Content Network
Kirchhoff's diffraction formula; Klein–Gordon equation; Korteweg–de Vries equation; Landau–Lifshitz–Gilbert equation; Lane–Emden equation; Langevin equation; Levy–Mises equations; Lindblad equation; Lorentz equation; Maxwell's equations; Maxwell's relations; Newton's laws of motion; Navier–Stokes equations; Reynolds-averaged ...
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike ,, and , set subtraction is neither associative nor commutative and it also is not left distributive over ,, , or even over itself.
Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of + , taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...