Search results
Results From The WOW.Com Content Network
The efficiency of a thermoelectric device for electricity generation is given by , defined as =.. The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit where the maximum device efficiency is approximately given by [7] = + ¯ + ¯ +, where is the fixed temperature at the hot junction, is the fixed temperature at the surface being cooled ...
The performance of thermoelectric materials can be evaluated by the figure of merit, = /, in which is the Seebeck coefficient, is the electrical conductivity and is the thermal conductivity. In order to improve the thermoelectric performance of materials, the power factor ( S 2 σ {\displaystyle S^{2}\sigma } ) needs to be maximized and the ...
Researchers are trying to develop new thermoelectric materials for power generation by improving the figure-of-merit zT. One example of these materials is the semiconductor compound ß-Zn 4 Sb 3 , which possesses an exceptionally low thermal conductivity and exhibits a maximum zT of 1.3 at a temperature of 670K.
Noise figure of a radio receiver; The thermoelectric figure of merit, zT, a material constant proportional to the efficiency of a thermoelectric couple made with the material; The figure of merit of digital-to-analog converter, calculated as (power dissipation)/(2 ENOB × effective bandwidth) [J/Hz] Luminous efficacy of lighting; Profit of a ...
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. [1] A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature ...
The Seebeck coefficient (also known as thermopower, [1] thermoelectric power, and thermoelectric sensitivity) of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. [2]
SiGe thermocouples in an RTG convert heat directly into electricity.Thermoelectric power generation requires a constantly maintained temperature difference among the junctions of the two dissimilar metals (i.e. Si and Ge) to produce a low power closed circuit electric current without extra circuitry or external power sources.
In physics and chemistry, the Nernst effect (also termed the first Nernst–Ettingshausen effect, after Walther Nernst and Albert von Ettingshausen) is a thermoelectric (or thermomagnetic) phenomenon observed when a sample allowing electrical conduction is subjected to a magnetic field and a temperature gradient normal (perpendicular) to each other.