When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.

  3. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.

  4. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    However, if char(K) = 2 then a skew-symmetric form is the same as a symmetric form and there exist symmetric/skew-symmetric forms that are not alternating. A bilinear form is symmetric (respectively skew-symmetric) if and only if its coordinate matrix (relative to any basis) is symmetric (respectively skew-symmetric).

  5. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Every square diagonal matrix is symmetric, since all off-diagonal entries are zero. Similarly, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator over a real inner product space.

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    When an n × n rotation matrix Q, does not include a −1 eigenvalue, thus none of the planar rotations which it comprises are 180° rotations, then Q + I is an invertible matrix. Most rotation matrices fit this description, and for them it can be shown that (Q − I)(Q + I) −1 is a skew-symmetric matrix, A.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If instead, A is equal to the negative of its transpose, that is, A = −A T, then A is a skew-symmetric matrix. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfies A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex ...

  8. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix.This definition can be extended to matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.

  9. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The difference of a square matrix and its conjugate transpose () is skew-Hermitian (also called antihermitian). This implies that the commutator of two Hermitian matrices is skew-Hermitian. An arbitrary square matrix C can be written as the sum of a Hermitian matrix A and a skew-Hermitian matrix B.