Search results
Results From The WOW.Com Content Network
Electric potential (also called the electric field potential, potential drop, the electrostatic potential) is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test ...
The magnetic vector potential, , is a vector field, and the electric potential, , is a scalar field such that: [5] = , =, where is the magnetic field and is the electric field. In magnetostatics where there is no time-varying current or charge distribution , only the first equation is needed.
Electric fields are important in many areas of physics, and are exploited in electrical technology. For example, in atomic physics and chemistry, the interaction in the electric field between the atomic nucleus and electrons is the force that holds these particles together in atoms.
An equipotential of a scalar potential function in n-dimensional space is typically an (n − 1)-dimensional space. The del operator illustrates the relationship between a vector field and its associated scalar potential field. An equipotential region might be referred as being 'of equipotential' or simply be called 'an equipotential'.
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.
Summary of electrostatic relations between electric potential, electric field and charge density. Here, r = x − x ′ {\displaystyle \mathbf {r} =\mathbf {x} -\mathbf {x'} } . If the electric field in a system can be assumed to result from static charges, that is, a system that exhibits no significant time-varying magnetic fields, the system ...
The electric field (E) is the dual of the magnetic field (H). The electric displacement field (D) is the dual of the magnetic flux density (B). Faraday's law of induction is the dual of Ampère's circuital law. Gauss's law for electric field is the dual of Gauss's law for magnetism. The electric potential is the dual of the magnetic potential.