Search results
Results From The WOW.Com Content Network
The numeric value adopted for ɡ 0 was, in accordance with the 1887 CIPM declaration, obtained by dividing Defforges's result – 980.991 cm⋅s −2 in the cgs system then en vogue – by 1.0003322 while not taking more digits than are warranted considering the uncertainty in the result.
Cavendish's result was first improved upon by John Henry Poynting (1891), [24] who published a value of 5.49(3) g⋅cm −3, differing from the modern value by 0.2%, but compatible with the modern value within the cited relative standard uncertainty of 0.55%.
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
Assuming SI units, F is measured in newtons (N), m 1 and m 2 in kilograms (kg), r in meters (m), and the constant G is 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. [12] The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798 ...
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...