Search results
Results From The WOW.Com Content Network
The 80-bit floating-point format has a range (including subnormals) from approximately 3.65 × 10 −4951 to 1.18 × 10 +4932. Although log 10 ( 2 64) ≈ 19.266, this format is usually described as giving approximately eighteen significant digits of precision (the floor of log 10 ( 2 63), the minimum guaranteed precision).
The x87 80-bit extended format meets this requirement. The original IEEE 754-1985 standard also had the concept of extended formats, but without any mandatory relation between emin and emax. For example, the Motorola 68881 80-bit format, [17] where emin = − emax, was a conforming extended format, but it became non-conforming in the 2008 revision.
The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.
Full Precision" in Direct3D 9.0 is a proprietary 24-bit floating-point format. Microsoft's D3D9 (Shader Model 2.0) graphics API initially supported both FP24 (as in ATI's R300 chip) and FP32 (as in Nvidia's NV30 chip) as "Full Precision", as well as FP16 as "Partial Precision" for vertex and pixel shader calculations performed by the graphics ...
Real floating-point type, usually mapped to an extended precision floating-point number format. Actual properties unspecified. Actual properties unspecified. It can be either x86 extended-precision floating-point format (80 bits, but typically 96 bits or 128 bits in memory with padding bytes ), the non-IEEE " double-double " (128 bits), IEEE ...
The x87 provides single-precision, double-precision and 80-bit double-extended precision binary floating-point arithmetic as per the IEEE 754-1985 standard. By default, the x87 processors all use 80-bit double-extended precision internally (to allow sustained precision over many calculations, see IEEE 754 design rationale ).
The otherwise binary Wang VS machine supported a 64-bit decimal floating-point format in 1977. [2] The Motorola 68881 supported a format with 17 digits of mantissa and 3 of exponent in 1984, with the floating-point support library for the Motorola 68040 processor providing a compatible 96-bit decimal floating-point storage format in 1990. [2]
Similar binary floating-point formats can be defined for computers. There is a number of such schemes, the most popular has been defined by Institute of Electrical and Electronics Engineers (IEEE). The IEEE 754-2008 standard specification defines a 64 bit floating-point format with: an 11-bit binary exponent, using "excess-1023" format.