When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...

  3. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).

  4. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  5. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    The use of the MAPE as a loss function for regression analysis is feasible both on a practical point of view and on a theoretical one, since the existence of an optimal model and the consistency of the empirical risk minimization can be proved. [1]

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The basic idea of logistic regression is to use the mechanism already developed for linear regression by modeling the probability p i using a linear predictor function, i.e. a linear combination of the explanatory variables and a set of regression coefficients that are specific to the model at hand but the same for all trials.

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    Toggle Loss function subsection. 6.1 Criticism. ... In regression analysis, "mean ... with the smallest variance among all unbiased estimators is the best unbiased ...

  8. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    The quadratic penalty term makes the loss function strongly convex, and it therefore has a unique minimum. The elastic net method includes the LASSO and ridge regression: in other words, each of them is a special case where λ 1 = λ , λ 2 = 0 {\displaystyle \lambda _{1}=\lambda ,\lambda _{2}=0} or λ 1 = 0 , λ 2 = λ {\displaystyle \lambda ...

  9. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...