Search results
Results From The WOW.Com Content Network
Illustration of the right-hand rule for the Lorentz force, cross product of an electric current with a magnetic field. The working principle involves the acceleration of an electrically conductive fluid (which can be a liquid or an ionized gas called a plasma) by the Lorentz force, resulting from the cross product of an electric current (motion of charge carriers accelerated by an electric ...
Here η is the total fluid column height (instantaneous fluid depth as a function of x, y and t), and the 2D vector (u,v) is the fluid's horizontal flow velocity, averaged across the vertical column. Further g is acceleration due to gravity and ρ is the fluid density. The first equation is derived from mass conservation, the second two from ...
The wake is the region of disturbed flow (often turbulent) downstream of a solid body moving through a fluid, caused by the flow of the fluid around the body. For a blunt body in subsonic external flow, for example the Apollo or Orion capsules during descent and landing, the wake is massively separated and behind the body is a reverse flow ...
It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting ...
In this image, waves are created within the bow shock near the boat's initial interface with the water, and a rooster tail directly behind the boat. A rooster tail is a term used in fluid dynamics, automotive gear shifting, and meteorology. It is a region of commotion or turbulence within a fluid, caused by movement. In fluid dynamics, it lies ...
Fluid dynamics is a subdiscipline of fluid mechanics that deals with fluid flow—the science of liquids and gases in motion. [4] Fluid dynamics offers a systematic structure—which underlies these practical disciplines —that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems.
In physics and engineering, magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium.
Numerical simulation of vortex-induced vibrations due to the flow around a circular cylinder. [1]In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting with an external fluid flow, produced by, or the motion producing, periodic irregularities on this flow.