Search results
Results From The WOW.Com Content Network
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
Oil-immersion objectives are used only at very large magnifications that require high resolving power. Objectives with high-power magnification have short focal lengths, facilitating the use of oil. The oil is applied to the specimen (conventional microscope), and the stage is raised, immersing the objective in oil.
Optical magnification is the ratio between the apparent size of an object (or its size in an image) and its true size, and thus it is a dimensionless number. Optical magnification is sometimes referred to as "power" (for example "10× power"), although this can lead to confusion with optical power.
Diagram illustrating the light path through a dark-field microscope. The steps are illustrated in the figure where an inverted microscope is used. Light enters the microscope for illumination of the sample. A specially sized disc, the patch stop (see figure), blocks some light from the light source, leaving an outer ring of illumination. A wide ...
The total angular magnification of a microscope image is then simply calculated by multiplying the eyepiece power by the objective power. For example, a 10× eyepiece with a 40× objective will magnify the image 400 times.
The light path of a bright-field microscope is extremely simple; no additional components are required beyond the normal light-microscope setup. The light path begins at the illuminator or the light source on the base of the microscope. Often a halogen lamp is used. The light travels through the objective lens into the ocular lens, through ...
In optics, optical power (also referred to as dioptric power, refractive power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the reciprocal of the focal length of the device: P = 1/f. [1] High optical power corresponds to short focal length.
Resolving power is the ability of an imaging device to separate (i.e., to see as distinct) points of an object that are located at a small angular distance or it is the power of an optical instrument to separate far away objects, that are close together, into individual images.