Search results
Results From The WOW.Com Content Network
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]
The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":
The volume conjecture is open for general knots, and it is known to be false for arbitrary links. The volume conjecture has been verified in many special cases, including: The figure-eight knot (Tobias Ekholm), [5] The three-twist knot (Rinat Kashaev and Yoshiyuki Yokota), [5] The Borromean rings (Stavros Garoufalidis and Thang Le), [5]
A square frustum, with volume equal to the height times the Heronian mean of the square areas. The Heronian mean may be used in finding the volume of a frustum of a pyramid or cone. The volume is equal to the product of the height of the frustum and the Heronian mean of the areas of the opposing parallel faces. [2]
The formula for the volume of a frustum of a paraboloid [23] [24] is: V = (π h/2)(r 1 2 + r 2 2), where h = height of the frustum, r 1 is the radius of the base of the frustum, and r 2 is the radius of the top of the frustum. This allows us to use a paraboloid frustum where that form appears more appropriate than a cone.
The "nine dots" puzzle. The puzzle asks to link all nine dots using four straight lines or fewer, without lifting the pen. The nine dots puzzle is a mathematical puzzle whose task is to connect nine squarely arranged points with a pen by four (or fewer) straight lines without lifting the pen or retracing any lines.
For a regular n-gonal bifrustum with the equatorial polygon sides a, bases sides b and semi-height (half the distance between the planes of bases) h, the lateral surface area A l, total area A and volume V are: [2] and [3] = (+) () + = + = + + Note that the volume V is twice the volume of a frusta.
A polygonal knot is a knot whose image in R 3 is the union of a finite set of line segments. [6] A tame knot is any knot equivalent to a polygonal knot. [6] [Note 2] Knots which are not tame are called wild, [7] and can have pathological behavior. [7] In knot theory and 3-manifold theory, often the adjective "tame" is omitted. Smooth knots, for ...