When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  3. Gradian - Wikipedia

    en.wikipedia.org/wiki/Gradian

    [18] [19] Today, the degree, ⁠ 1 / 360 ⁠ of a turn, or the mathematically more convenient radian, ⁠ 1 / 2 π ⁠ of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions. [23]

  4. Degree (angle) - Wikipedia

    en.wikipedia.org/wiki/Degree_(angle)

    A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]

  5. Steradian - Wikipedia

    en.wikipedia.org/wiki/Steradian

    A solid angle of one steradian subtends a cone aperture of approximately 1.144 radians or 65.54 degrees. In the SI, solid angle is considered to be a dimensionless quantity, the ratio of the area projected onto a surrounding sphere and the square of the sphere's radius. This is the number of square radians in the solid angle.

  6. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    However, in mathematical literature the angle is often denoted by θ instead. Angles in polar notation are generally expressed in either degrees or radians (2 π rad being equal to 360°). Degrees are traditionally used in navigation, surveying, and many applied disciplines, while radians are more common in mathematics and mathematical physics. [9]

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    provided the angle is measured in radians. Angles measured in degrees must first be converted to radians by multiplying them by ⁠ / ⁠. These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science.

  8. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Thus, in settings beyond elementary geometry, radians are regarded as the mathematically natural unit for describing angle measures. When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete ...

  9. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    Additionally, an angle that is a rational multiple of radians is constructible if and only if, when it is expressed as / radians, where a and b are relatively prime integers, the prime factorization of the denominator, b, is the product of some power of two and any number of distinct Fermat primes (a Fermat prime is a prime number one greater ...