Search results
Results From The WOW.Com Content Network
Calling f with a regular function argument first applies this function to the value 2, then returns 3. However, when f is passed to call/cc (as in the last line of the example), applying the parameter (the continuation) to 2 forces execution of the program to jump to the point where call/cc was called, and causes call/cc to return the value 2.
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
The expression returned by the lambda function can be assigned to a variable and used in the code at multiple places. >>> add = lambda a : a + a >>> add ( 20 ) 40 Another example would be sorting items in a list by the name of their class (in Python, everything has a class):
The generalized curry function is given an uncurried function f and its arity (say, 3), and it returns the value of (lambda (v1) (lambda (v2) (lambda (v3) (f v1 v2 v3)))). This example is due to Olivier Danvy and was worked out in the mid-1980s. [13] Here is a unit-test function to illustrate what the generalized curry function is expected to do:
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
In computer programming, apply applies a function to a list of arguments. Eval and apply are the two interdependent components of the eval-apply cycle, which is the essence of evaluating Lisp, described in SICP. [1] Function application corresponds to beta reduction in lambda calculus.
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
In this case particular lambda terms (which define functions) are considered as values. "Running" (beta reducing) the fixed-point combinator on the encoding gives a lambda term for the result which may then be interpreted as fixed-point value. Alternately, a function may be considered as a lambda term defined purely in lambda calculus.