When.com Web Search

  1. Ad

    related to: how to interpret logit model in spss 19 software

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  3. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  4. Generalized additive model for location, scale and shape

    en.wikipedia.org/wiki/Generalized_additive_model...

    The first two population distribution parameters and are usually characterized as location and scale parameters, while the remaining parameter(s), if any, are characterized as shape parameters, e.g. skewness and kurtosis parameters, although the model may be applied more generally to the parameters of any population distribution with up to four ...

  5. Best–worst scaling - Wikipedia

    en.wikipedia.org/wiki/Best–worst_scaling

    multinomial discrete choice analysis, in particular multinomial logit (strictly speaking the conditional logit, although the two terms are now used interchangeably). The multinomial logit (MNL) model is often the first stage in analysis and provides a measure of average utility for the attribute levels or objects (depending on the Case).

  6. Conditional logistic regression - Wikipedia

    en.wikipedia.org/wiki/Conditional_logistic...

    It is in the survival package because the log likelihood of a conditional logistic model is the same as the log likelihood of a Cox model with a particular data structure. [3] It is also available in python through the statsmodels package starting with version 0.14. [4]

  7. Ordinal regression - Wikipedia

    en.wikipedia.org/wiki/Ordinal_regression

    In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.

  8. Multilevel modeling for repeated measures - Wikipedia

    en.wikipedia.org/wiki/Multilevel_Modeling_for...

    One application of multilevel modeling (MLM) is the analysis of repeated measures data. Multilevel modeling for repeated measures data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.

  9. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    The log-logistic has been used as a model for the period of time beginning when some data leaves a software user application in a computer and the response is received by the same application after travelling through and being processed by other computers, applications, and network segments, most or all of them without hard real-time guarantees ...