When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.

  3. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.

  4. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group GL n ( F ) when F is a field .

  5. Linear group - Wikipedia

    en.wikipedia.org/wiki/Linear_group

    In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful , finite-dimensional representation over K ).

  6. Higher-dimensional gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Higher-dimensional_gamma...

    The matrix representations of this group then provide a concrete realization that can be used to specify the action of the gamma matrices on spinors. For ( p , q ) = ( 1 , 3 ) {\displaystyle (p,q)=(1,3)} dimensions, the matrix products behave just as the conventional Dirac matrices .

  7. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Thus, an matrix of complex numbers could be well represented by a matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an n × m {\displaystyle n\times m} matrix made up of complex numbers.

  8. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can be chosen to be a unitary matrix then A and B are unitarily equivalent. The spectral theorem says that every normal matrix is unitarily equivalent to some diagonal matrix.

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.