Search results
Results From The WOW.Com Content Network
Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the direction of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by Newton in his treatment of birefringence and, more generally, of the splitting of light beams at interfaces into a transmitted ...
That energy possessed by a single photon corresponds exactly to the transition between discrete energy levels in an atom (or other system) that emitted the photon; material absorption of a photon is the reverse process. Einstein's explanation of spontaneous emission also predicted the existence of stimulated emission, the principle upon which ...
The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...
The einstein (symbol E) is an obsolete unit with two conflicting definitions. It was originally defined as the energy in one mole of photons ( 6.022 × 10 23 photons ). [ 1 ] [ 2 ] Because energy is inversely proportional to wavelength , the unit is frequency dependent.
During the 1930s there was great interest in the neutrino theory of light and Pascual Jordan, [4] Ralph Kronig, Max Born, and others worked on the theory. In 1938, Maurice Pryce [5] brought work on the composite photon theory to a halt. He showed that the conditions imposed by Bose–Einstein commutation relations for the composite photon and ...
In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. [1] The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated ...
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. [1] An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.
The particle theory of light led Pierre-Simon Laplace to argue that a body could be so massive that light could not escape from it. In other words, it would become what is now called a black hole . Laplace withdrew his suggestion later, after a wave theory of light became firmly established as the model for light (as has been explained, neither ...