When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    The 2-norm of a matrix A is the norm based on the Euclidean vectornorm; that is, the largest value ‖ ‖ when x runs through all vectors with ‖ ‖ =. It is the largest singular value of . In case of a symmetric matrix it is the largest absolute value of its eigenvectors and thus equal to its spectral radius.

  4. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    Write the triangular matrix U as U = D + N, where D is diagonal and N is strictly upper triangular (and thus a nilpotent matrix). The diagonal matrix D contains the eigenvalues of A in arbitrary order (hence its Frobenius norm, squared, is the sum of the squared moduli of the eigenvalues of A, while the Frobenius norm of A, squared, is the sum ...

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  6. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    If A is a real matrix, its Jordan form can still be non-real. Instead of representing it with complex eigenvalues and ones on the superdiagonal, as discussed above, there exists a real invertible matrix P such that P −1 AP = J is a real block diagonal matrix with each block being a real Jordan block. [15]

  8. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  9. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    Let A be a square matrix. Then by Schur decomposition it is unitary similar to an upper-triangular matrix, say, B. If A is normal, so is B. But then B must be diagonal, for, as noted above, a normal upper-triangular matrix is diagonal. The spectral theorem permits the classification of normal matrices in terms of their spectra, for example: