Search results
Results From The WOW.Com Content Network
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
Historically, the term 'free energy' has been used for either quantity. In physics, free energy most often refers to the Helmholtz free energy, denoted by A (or F), while in chemistry, free energy most often refers to the Gibbs free energy. The values of the two free energies are usually quite similar and the intended free energy function is ...
free body diagram frequency frequency modulation free fall Any motion of a body where its own weight is the only force acting upon it. freezing point The temperature at which a substance changes state from liquid to solid. friction function fundamental forces. Also called fundamental interactions. fundamental frequency fundamental theorem of ...
A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga, so long as the sculpture or stack of blocks is not in the state of collapsing.
For example, for the bond of an electrical system, the flow is the current, while the effort is the voltage. By multiplying current and voltage in this example you can get the instantaneous power of the bond. A bond has two other features described briefly here, and discussed in more detail below. One is the "half-arrow" sign convention.
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
In mechanics, for example, energy transfer equals the product of the force applied to a body and the resulting displacement. Conjugate variables are pairs of thermodynamic concepts, with the first being akin to a "force" applied to some thermodynamic system , the second being akin to the resulting "displacement", and the product of the two ...
In recent years, [when?] thermal physics has applied the definition of chemical potential to systems in particle physics and its associated processes. For example, in a quark–gluon plasma or other QCD matter , at every point in space there is a chemical potential for photons , a chemical potential for electrons, a chemical potential for ...